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Abstract. Vegetation and fire activity have dynamically changed in response to past variations in global and regional
climate. Here we investigate these responses across the Neotropics based on the analysis of modern vegetation distribution
and fire activity in relation to modern climate patterns in the one hand, and a compilation of 243 vegetation records and 127
20  charcoal records encompassing the last 21,000 years before present (ka) in relation to past climate changes on the other
hand. Our analyses on the dynamics of past tree cover and fire activity focus on seven subregions: (1) northern Neotropics
(NNeo); (2) central Andes (CAn); (3) Amazonia; (4) northeastern Brazil (NEB); (5) central-eastern Brazil (CEB); (6)
southeastern South America (SESA); and (7) southern Andes (SAn). The regionalized assessment unveils spatial
heterogeneity in the timing and controls of vegetation and fire dynamics. Temperature, atmospheric CO, concentrations,
25 and precipitation exhibit distinct and alternating roles as primary drivers of tree cover and fire regime changes. During the
Last Glacial Maximum (LGM, here covering 21-19 ka), biomass growth in high elevation sites (CAn) and in sub- and
extra-tropical latitudes (SESA and SAn) was mainly limited by low temperatures and atmospheric CO, concentrations,
while fuel-limited conditions restrained fire activity. In warmer tropical regions (NNeo, Amazonia, CEB), moisture
availability was likely the main controlling factor of both vegetation and fire. Throughout the deglacial phase (19-11.7 ka),
30 progressive warming fostered a gradual biomass expansion, leading to an intensification of fire activity in the sub- and
extra-tropical temperature-limited regions. Meanwhile, increased (decreased) precipitation associated with millennial-scale
events favored increases (decreases) in tree cover in CAn, Amazonia, CEB, and NEB (NNeo). Between 14-13 ka, most
southern latitude subregions (Amazonia, CEB, SESA, SAn) saw a stepwise rise in fire activity coeval with a second rapid
warming, contrary to decreased fire activity in NNeo amid relatively wetter conditions. Throughout the Holocene, when
35 temperature and atmospheric CO, fluctuations were lower, shifts in precipitation became the primary driver of vegetation
and fire dynamics across all the Neotropics. The intensification of the South American Summer Monsoon throughout the
Holocene favored a continuous increase in tree cover over Amazonia, CEB, and SESA, but led to a forest cover decrease in
NNeo and NEB. From the early- to the mid-Holocene, the strengthening of the Southern Westerly Winds promoted
vegetation expansion and fire regime weakening in SAn. In the late Holocene, human impacts became more pronounced,

40  with a clearer effect on regional tree cover and fire activity, particularly in NNeo and CAn.
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1 Introduction

The Neotropics is the most species-rich biogeographical domain and home of at least one third of global biodiversity
(Raven et al., 2020). It extends from the southern parts of North America to southernmost South America and encompasses
a wide range of environments, from the wettest rainforests to the driest deserts on Earth. The distinctly high diversity in the
45 region is attributed to a combination of biotic processes, such as in situ adaptation (Simon et al., 2009), species interchange
(Antonelli et al., 2018) and ecological interactions (Fine et al., 2004), combined with abiotic process including landscape
evolution (Hoorn et al., 2010; Richardson et al., 2001) and climate fluctuations throughout the Cenozoic (Cracraft et al.,
2020; Jaramillo et al., 2006; Rull, 2011; Sawakuchi et al., 2022). Largely influenced by changes in the tectonic regime, the
long-term climate cooling throughout the Cenozoic induced a retraction of warm tropical forests and culminated in the
50  onset of Quaternary glacial-interglacial cycles (Morley, 2011; Westerhold et al., 2020).
Quaternary glacial-interglacial cycles together with millennial-scale climate change were responsible for shaping species
distribution in Neotropics. For instance, the distinct hydroclimate (Baker and Fritz, 2015; Wang et al., 2017), 3-8 °C colder
temperatures (Bush et al., 2001; Chiessi et al., 2015; Colinvaux et al., 1996; Wille et al., 2001), and the ca. 100 ppm lower
atmospheric CO; concentrations (COzam) (Bereiter et al., 2015; Petit et al., 1999) of the Last Glacial Maximum (LGM,
55 typically between 23,000-19,000 yr ago (23 — 19 ka)) induced substantial and widespread changes in vegetation
composition and structure. These changes predominantly, but not exclusively, led to a lower biomass state with a weaker
fire regime (e.g. (Behling, 2002a; Bush et al., 2009; Bush and Flenley, 2007; Haas et al., 2023; Ledru, 2002; Nanavati et al.,
2019; Power et al., 2010b). However, the magnitude and timing of these changes in vegetation and fire were
hetereogeneous, leading diverse regional patterns. This variability highlights the complexity of environmental dynamics
60  since the LGM and the need for region-specific analyses to understand ecosystem responses to past climatic shifts.
Investigating the primary mechanisms controlling ecosystem dynamics is crucial for anticipating the impacts of ongoing
climate changes. The projected large-scale changes in specific climate system components, unprecedented in the
instrumental record, may only find parallels in the geological past (Wunderling et al., 2024). In this sense, sedimentary
pollen and charcoal records offer the oportunity to obtain valuable insights into long-term responses and a deeper
65 understanding of the linkages between climate changes and environmental shifts (Daniau et al., 2012; Flantua et al., 2016;
Marlon et al., 2013; Nanavati et al., 2019; Power et al., 2010a).
Here we use 243 pollen records and 127 charcoal records to reconstruct tree cover and fire regime changes in the
Neotropics spanning the last 21 ka. We also use compiled archeological radiocarbon data available in literature and
databases to discuss vegetation and fire changes in relation to potential anthropogenic impacts. We focus on subregions
70 including the (1) northern Neotropics (NNeo); (2) central Andes (CAn); (3) Amazonia; (4) central-eastern Brazil (CEB); (5)
northeastern Brazil (NEB); (6) southeastern South America (SESA); and (7) southern Andes (SAn) (Fig. 1 and 2). These
subregions were chosen based on data availability and are delimited by their present-day climatic and vegetation features.
Furthermore, we analyze modern fire patterns using satellite data to compare with climate and vegetation parameters to
contribute to our interpretations. These analyses allow us to assess distinct vegetation and fire dynamics from each

75 subregion and the competing drivers influencing their responses.
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2 Vegetation and climate settings

(1) The northern Neotropics (NNeo), comprising Central America and northernmost South America, is mainly covered by

moist tropical forests, pine-oak forests, dry forests, and shrublands (Fig. 1a). The region exhibits a seasonal climate, with
80 lowland mean annual temperatures ranging from 25 to 28 °C (Fig. 1b). Precipitation patterns are strongly influenced by the
latitudinal shifts of the Intertropical Convergence Zone (ITCZ) with a regional mean of 1600 mm.yr?. During boreal
summer, when the ITCZ shifts further north, most of the rainfall is transported into the region by the Caribbean Low Level
Jet (Cook and Vizy, 2010) (Fig. 1d). Large wildfires in the region are associated with humid periods succeeded by extreme
dry periods, often linked with EI Nifio Southern Oscillation (ENSO) variability with La Nifia-driven wet events followed by
85 El Nifio-driven droughts (Ponce-Calderon et al., 2021).
(2) Amazonia is the most extensive tropical rainforest on Earth, marked by weak seasonality with mean monthly
temperatures ranging between 25 and 27 °C and mean annual precipitation of 2300 mm.yr? (Fisch et al., 1998; Marengo,
1992). Precipitation seasonality increases south- and eastwards, while parts of northwestern Amazonia remain wet
throughout the year (Fisch et al., 1998; Marengo, 1992) (Fig. 1c,d). During austral summer, increased land-ocean thermal
90 contrast enhances the atmospheric transport of humidity towards the continent promoting the South American Summer
Monsoon (SASM), responsible for most of the precipitation over Amazonia (Garreaud et al., 2009; Vera et al., 2006) (Fig.
1c). The predominant moist conditions of the rainforest make natural wildfires rare, although severe drought events, such as
related to El Nifio, further climate changes, and human impacts can interact to increase fire events, causing a positive
feedback loop (Brando et al., 2020; Bush et al., 2008; Nepstad et al., 1999).
95  (3) The herein defined central Andes (CAn) comprises areas above 2300 m altitude, which include (i) upper montane
forests from 2300 to 3300 m, (ii) the paramo, from ca. 3200, and (iii) the puna, from ca. 3700 m, to the snow line (Troll,
1968) (Fig. 1a). Precipitation patterns in the region are heterogeneous and partially linked to the SASM (Espinoza et al.,
2020; Segura et al., 2019) (Fig. 1c). Andean montane forests feature the wettest parts of Amazonia recording more than
5000 mm yrtin some area (Espinoza et al., 2020) (Fig. 1c). The paramo and the puna, the alpine vegetation of the Andes,
100 are biogeographically separated by the Huancabamba depression at ca. 6°S (Cuesta et al., 2017; Troll, 1968). Most of the
paramo, located north of the Huancabamba depression, receives high precipitation between 1000 and 2000 mm.yr?
(Cuatrecasas, 1968). The puna, located south of the Huancabamba depression, covers the Altiplano under precipitation from
200 to 500 mm.yr* (Vuille and Keimig, 2004) (Fig. 1c,d). Most of the annual precipitation in the region is related to moist-
laden easterly winds from Amazonia and associated with the onset of the Bolivian High, an upper-level high-pressure cell
105 linked to the SASM. The interannual precipitation variability is influenced by zonal winds modulated by sea surface
temperatures (SST) across the tropical Pacific Ocean (Garreaud et al., 2003; Vuille, 1999). During weakened easterlies,
such as during El Nifio events, the incursion of dry-warm upper-level westerly winds inhibit precipitation in the Altiplano
and weakens the Bolivian High. Contrarily, during La Nifia events, the incursion of Amazon moisture conveyed by easterly
winds is facilitated (Garreaud et al., 2003; Vuille, 1999). While natural fires in the forests of the CAn are rare, wildfires in
110  grasslands are frequent, generally of low-intensity, and predominantly driven by human activity (Bush et al., 2015;
Gutierrez-Flores et al., 2024).

(4) Northeastern Brazil (NEB) includes mostly the xeric vegetation of Caatinga (Fig. 1a). The region is characterized by

mean annual temperatures of 24 to 28 °C and semiarid conditions with precipitation below 900 mm.yr?, concentrated
between February and May, while potential annual evapotranspiration exceeds 2200 mm.yr? (Pinheiro et al., 2016). Low

115 precipitation in the region is driven by the Nordeste Low, a high-pressure cell dynamically linked to the Bolivian High
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(Lenters and Cook, 1997). In Caatinga, scarce fuel availability related to low biomass production limits regular fire events
(Alvarado et al., 2020; Argibay et al., 2020).

(5) Central-eastern Brazil (CEB) is primarily associated with Cerrado vegetation, characterized by a mosaic of

physiognomies, ranging from open grasslands to closed shrublands and woodlands, typically covered by a continuous
120 herbaceous layer (Eiten, 1972). The climate of CEB is characterized by the austral summer establishment of the SASM,
marked by the occurrence South Atlantic Convergence Zone (SACZ), followed by a dry season lasting four to six months,
and has an annual precipitation of about 750 to 2000 mm.yr* (Eiten, 1972; Goodland, 1971; Vera et al., 2006) (Fig. 1c). In
this ecosystem, wildfires are regular and play a key role in controlling vegetation physiognomy and biodiversity (Durigan
and Ratter, 2016; Mistry, 1998; Moreira, 2000).
125 (6) Southeastern South America (SESA) is mostly occupied by the Atlantic Forest, composed of both evergreen and

semideciduous forests, as well as mixed forests in the southern and mountainous regions (Fig. 1a). SESA mean annual
temperatures range from ca. 25 °C in the tropical forests to 12 °C in the southern mixed forests (Kamino et al., 2019;
Ribeiro et al., 2011) (Fig. 1b). Coastal regions experience over 1800 mm.yr? of precipitation well-distributed throughout
the year, while inland areas are relatively more seasonal, ranging from 1300 to 1600 mm.yr* (Kamino et al., 2019). Most
130  annual precipitation in the regions influenced by the SACZ occurs during austral summer (Fig. 1c). Predominantly during
austral autumn and winter, the South Atlantic anticyclone affects the region, leading to lower temperatures and reduced
rainfall, whereas to the south of the SESA, cold fronts favor moderate precipitation levels (Kamino et al., 2019) (Fig. 1d).
Wildfires are naturally rare in the Atlantic Forest due to high moisture and dense forest cover, however, large scale
degradation, rising temperatures and extreme climatic events, such as those related to La Nifia years, intensify wildfires
135 frequency and severity (Jesus et al., 2022; da Silva Junior et al., 2020).
(7) Southern Andes (SAn), including Patagonia and Tierra del Fuego, primarily encompasses wet-temperate forests, alpine

forests and grasslands. Mean annual temperature ranges from 16 to 3 °C between the latitudes 32 and 55°S (Fig. 1b). The
zonal rainfall gradient is abruptly sharp, with the west part of the Andes cordillera receiving most of the precipitation, while
drier conditions prevail in the eastern side (Coronato et al., 2005; Endlicher and Santana, 1988) (Fig. 1c,d). Precipitation is
140  controlled by the Southern Westerly Winds (SWW), which are southward-displaced during austral summer, while during
austral winter they weaken and expand equatorward (Garreaud et al., 2009) (Fig. 1c,d). Fire activity in the region is favored
by intermediate productivity levels and human presence but is primarily conditioned by dry and warm events, such as those
associated with La Nifa episodes, positive phases of the Antarctic Oscillation, or a strengthened winter-spring Pacific
Subtropical Anticyclone, which shifts the SWW poleward (Holz et al., 2012; Kitzberger et al., 2022; Kitzberger and Veblen,
145  1997).
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Fig. 1 — Vegetation and climate settings of the Neotropics. Studied sites (white circles) and target subregions (numbered polygons) are
depicted. (a) Ecoregions, TrSUMBF — Tropical subtropical moist broadleaf forests; TrSuDBF — Tropical subtropical dry broadleaf forests;

150 TrSuGSS - Tropical subtropical grasslands, savannas, and shrublands; TeBMiF — Temperate broadleaf mixed forests; TeCF — Temperate
coniferous forests; FGS — Flooded grasslands and savannas; DXSh — Desert and xeric shrublands; MoGSh — Montane grasslands and
shrublands; MeFWSc — Mediterranean forests, woodlands, and scrubs (Olson et al., 2001). (b) Mean annual temperature (MAT)
(Hijmans et al., 2005). (c,d) Precipitation during the extended austral (c) summer (November — March) and (d) winter (May — September)
averaged from 1960 to 2021 using the data from Climatic Research Unit (Harris et al., 2020). CLLJ — Caribbean Low-level jets; ITCZ —

155 Intertropical Convergence Zone; LLJ — Low-level jets; SACZ — South Atlantic Convergence Zone; SASM — South American Summer
Monsoon; SWW — Southern Westerly Winds.

3 Material and methods

3.1 Compilation of records and data treatment

The study area spans the Neotropical realm between latitudes 30°N to 60°S and longitudes 33°W to 105°W (Fig. 2a).
160  Pollen records were gathered from the Neotoma (211 entries) and Pangaea (4 entries) databases (Felden et al., 2023;
Williams et al., 2018). Charcoal data were gathered from the Reading (100 entries) (Harrison et al., 2022), Neotoma (11
entries) and Pangaea (2 entries) databases. Additionally, we digitalized and extracted 38 pollen and 14 charcoal records
from publications without openly available data, directly from published diagrams by using WebPloterDigitalizer

(WebPlotDigitizer version 5.2) (Fig. 2b) (for the full list of datasets and respective citations and sources, see Supplementary
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165  Table 1). For NEB, microcharcoal influx data is represented by the only two available curves for the region derived from
De Oliveira et al. (1999) and Bouimetarhan et al. (2018). Records were grouped into seven subregions (Sect. 2), delimited
by similarities in dominant climate features and vegetation (Fig. 1 and 2a):

Northern Neotropics (NNeo) comprises 21 pollen and 26 charcoal records collected north of 7 °N, mostly from Central
America, excluding high montane sites above 3000 m. Most frequent taxa include trees and shrubs such as Pinus,

170 Moraceae/Urticaceae, Quercus, Alnus, Acalypha, Bursera, and Piper and herbs such as Poaceae, Cyperaceae, Asteraceae,
and Amaranthaceae.

Amazonia includes mostly records from the eastern, southwestern, and northern borders of the Amazon River drainage
basin (26 pollen, 32 charcoal). Most common woody taxa include Moraceae, Alchornea, Melastomataceae, Podocarpus,
Myrtaceae, Mauritia, Cecropia, Euterpe, and llex, and herbs such as Poaceae, Asteraceae, and Cyperaceae.

175 Central Andes (CAn) comprises 51 pollen and 20 charcoal records located between 0 °S and 24 °S, from the Altiplano and
the east-flank of the Andes located above 2300 m (average altitude of the records: 3560 m). Main pollen taxa include herbs
such as Poaceae, Asteraceae, Cyperaceae, and Plantago, while the woody component includes taxa such as
Melastomataceae, Weinmannia, Hedyosmum, Moraceae/Urticaceae, Alnus, Podocarpus, and Myrica.

Northeastern Brazil (NEB) encompasses the Caatinga, including marine records off the northern Brazilian margin, under

180 major influence of NEB sources. The dearth of pollen (6) and charcoal (2) records prevent detailed vegetation and fire
regime assessment. Some of the main taxa found in pollen records include herbs such as Poaceae, Cyperaceae, Asteraceae,
Borreria, and Amaranthaceae, and woody taxa such as Cuphea, Alchornea, Arecaceae, Moraceae/Urticaceae, Dalbergia,
Schefflera, Myrsine, Mimosa, and Platymiscium.

Central-eastern Brazil (CEB) is represented by 18 pollen and 10 charcoal records in the southeastern Cerrado (Fig. 8d,h).

185 Characteristic pollen taxa include herbs such as Poaceae, Cyperaceae, Asteraceae, Apiaceae, and Borreria, and woody taxa
such as Myrtaceae, Cecropia, Moraceae/Urticaceae, Myroxylon, Mauritia, and Melastomataceae.

Southeastern South America (SESA) encompasses 21 pollen and 14 charcoal records within the modern extent of the
Atlantic Forest. Most common herbaceous taxa are Poaceae, Cyperaceae, Asteraceae, Eryngium, and Xyris while
characteristic woody taxa include Myrtaceae, Moraceae/Urticaceae, Alchornea, Myrsine, Arecaceae, Melastomataceae,

190 Ericaceae, Podocarpus, and Araucaria.

Southern Andes (San) comprises 51 pollen records and 18 charcoal records located south of 32°S. Characteristic taxa from
this subregion include herbs such as Poaceae, Cyperaceae, Asteraceae, Apiaceae, Misodendrum, and Brassicaceae and
woody taxa such as Nothofagus, Austrocedrus, Cupressaceae, Ericaceae, Empetrum, Myrtaceae, and Podocarpus.

Datapoints outside the defined subregions (black dots in Fig. 2a) were excluded from subregional analyses because they

195 were either isolated or located outside subregional definitions, e.g., high montane sites from NNeo > 3000 m; low altitudes
from CAn < 2200 m; or positioned on the Andean west flank, which has a distinct climate control relative to the east flank
and Altiplano.

Arboreal pollen (AP) percentages were calculated based on the sum of woody taxa (trees and palms, considering taxa at the
genus and family level) divided by the total count of trees, palms, and herbs, excluding mangrove and aquatic taxa, fern

200  spores, and unidentified types. Samples with pollen counts below 100 grains were removed. Records from sites highly
influenced by coastal dynamics (> 15 % of mangrove taxa) were removed from the AP composites. For charcoal
composites, charcoal raw counts and concentrations were converted to influx using site-specific sedimentation rates. Data
expressed as charcoal/pollen ratio were converted to influx-like units by multiplying by the sedimentation rate. New age

models were calculated for Neotoma charcoal entries as per Harrison et al. (2022). We used the ‘Bacon’ R package (Blaauw
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205  and Christen, 2011) and the IntCal20 (Reimer et al., 2020) and SHCal20 (Hogg et al., 2020) calibration curves for latitudes
above 15°N and below 15°S, respectively, and a 50:50 mixed calibration curve for intermediate latitudes.
Standardization of AP and charcoal influx data followed Power et al. (2008) using the ‘paleofire’ R package (Blarquez et
al., 2014). The values were transformed and standardized with a Box-Cox transformation (.= 0.01) and 0-1 range rescaling
and converted to z-scores using a common base period of 0.2-21 ka, so that all sites have a common mean and variance.

210 Composite curves were constructed by fitting a locally weighted regression (LOWESS) curve to the pooled transformed
and rescaled data, with confidence intervals (2.5 and 97.5" percentiles) generated through 1000 bootstrap replicates. A
two-stage smoothing approach was applied using a pre-binning of 20 yr and a LOWESS smoothing of 1000 yr window half
width to produce low resolution curves and a smoothing of 400 yr window half width for higher resolution curves (Daniau
et al., 2012; Marlon et al., 2008).

215  Additionally, we produced maps displaying site-specific AP percentages and AP and charcoal influx z-scores for all data
points (Fig. 2a) to discuss spatial patterns. For mapping purposes, the z-scores were divided into five equidistant categories:
> +0.8 (strong positive anomalies), +0.8 to +0.4 (positive anomalies), +0.4 to -0.4 (weak positive or negative anomalies), -

0.4 to -0.8 (negative anomalies), and < -0.8 (strong negative anomalies).
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Fig. 2 — Spatial and temporal distribution of analyzed records. (a) Distribution of pollen and charcoal records compiled from
Neotoma, Pangaea, and Reading databases, and manually extracted from publications (Felden et al., 2023; Harrison et al., 2022; Williams
et al., 2018). Details on the reference, site location, and maximum spanning age from each site are available in Supplementary Table 1.
Black circles indicate sedimentary records that were not included in the subregional analysis. Elevations greater than 500 m are
225 represented in light gray, while areas above 1500 m altitude are shown in dark gray. Major rivers are displayed as black lines. (b) Number
of pollen and charcoal records available for each 200-year time bin over the last 21 ka, providing an overview of temporal data coverage.

3.2 Radiocarbon ages from archeological sites

We generated summed probability density (SPD) curves as a proxy for human occupation trends (Contreras and Meadows,
230 2014; Williams, 2012), based on compiled “C ages from archaeological sites available from literature (Araujo et al., 2025;

Goldberg et al., 2016) and the Mesoamerican Radiocarbon database (MesoRad, 2020). Compiled data from Goldberg et al.
7
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(2016) are limited to ages older than 2 ka “C ages. This approach assumes a proportional relationship between human
populations and the production of datable material, as well as the statistical representativeness of the actual dated samples
in relation to the full spectrum of “C samples from a region (Contreras and Meadows, 2014).

235  We produced SPD curves using ‘rcarbon’ R package, with 600-yr moving average window size to reduce the effects of the
calibration process and 100-yr bins to account for potential biases associated to strong inter-site variability in sample size
(Crema and Bevan, 2021). We use calibration curve SHCal20 (Hogg et al., 2020) for Southern Hemisphere “C ages
(Amazonia, NEB, CEB, SESA, CAn) and IntCal20 (Reimer et al., 2020) for Northern Hemisphere “C ages (NNeo). SPD
curves are shown from the oldest non-zero values.

240 For NNeo, we use C ages available from MesoRad (2020) (N = 1692) and at latitudes northern of 7°N from Goldberg et
al. (2016) (N = 96). For Andean regions, such as CAn (N = 949) and SAn (N = 621), we use data compiled by Goldberg et
al. (2016). For Amazonia (N = 732), NEB (N = 542), CEB (N = 481), and SESA (N = 1701), we use data compiled by
Araujo et al. (2025).

245 3.3  Modern fire patterns extraction and analysis

To assess the current relationship between climate, fire activity, and vegetation parameters, we extracted data from the
global fire patch functional traits database (FRY) (Laurent et al., 2018). The FRY map resolution was rescaled from
0.00416° x 0.00416° to grids of 0.45° x 0.45° (2500 km? at the equator) using 20 yr of satellite monitoring data (2001 to
2020). For each rescaled grid, we obtained the mean fire radiative power, as a measure of fire intensity, and total burned
250  area. Fire radiative power was then compared with WorldClim climate variables (Fick and Hijmans, 2017) (originally 10
minutes spatial resolution, 0.1667° x 0.1667°)—including mean annual temperature (MAT), maximum temperature of the
warmest month, annual precipitation, precipitation of the driest quarter, and precipitation seasonality—and major
vegetation types defined by ecoregions (Olson et al., 2001) (Fig. 3). For consistency, the climate models and ecoregion

distribution were rescaled to match the FRY fire map.
255 4 Results
4.1  Modern fire, climate and vegetation relationship

Modern vegetation and fire patterns correlate with climate (Fig. 3). Tropical savannas are predominantly distributed in
seasonal climates with annual precipitation ranging from 1000 to 2000 mm.yr* and mean annual temperature between 20
and 27 °C (Fig. 3a). Towards wetter climates, the conditions for the existence of savannas overlap with those of tropical
260 moist forests, while towards drier climates, they overlap with those of xeric vegetation (Fig. 3a,b).
Regarding fire activity, tropical moist forests and xeric vegetation exhibit weaker fire activity in relation to savannas (Fig.
3c,d). Fire activity also weakens towards cooler subtropical and temperate savannas and montane grasslands. Fire radiative
power, which is linearly correlated with the total burned area (Fig. 3e), is more intense in tropical savannas, specifically at
intermediate annual rainfall levels (875-2000 mm.yr?, peaking at ca. 1520 mm.yr, Fig. 3c) and precipitation under 100
265 mm during the driest month (Fig. 3d). Fire intensity rises with mean annual temperatures above 21 °C, reaching maximum
values as temperatures rise (Fig. 3c). Regions with maximum temperatures of the warmest month above 29 °C concentrate
most of the fire activity (Fig. 3d). The fire season in tropical America occurs during spring (i.e., March to May in the
northern tropics and August to October in the southern tropics) (Fig. 3f), while along the southwestern flank of the Andes

the fire season occurs during austral autumn.
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Fig. 3 — Climate, vegetation, and fire patterns across the Neotropics. (a-b) Distribution of ecoregions (Olson et al., 2001) and (c-e)
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(e) Relationship between total burned area and mean fire radiative power, averaged per 2500 km2 grid cell. (f) Monthly relative burned

275 area for the Northern and Southern Hemisphere regions of the Neotropics from MODIS (Fire Information for Resource Management
System — FIRMS: https://firms.modaps.eosdis.nasa.gov/).

4.2 Pollen and charcoal records
4.2.1 Representativeness of the dataset

280  The existing records are distributed across the main subregions of the Neotropics, ranging from the moist tropical forests to
the semiarid xeric vegetation (Fig. 1 and 2). While the Andes are particularly well sampled (Fig. 2a), areas such as central
Amazonia, arid and semiarid regions (e.g., northeastern Brazil), and central regions of the Neotropics located between 20
and 40°S (Fig. 2a) are underrepresented.

In terms of chronological representation, site density increases towards the Holocene (Fig. 2b). Across the Neotropics,

285 considering time bins of 200-yr intervals, the LGM (21-19 ka) is supported by an average of 29 pollen and 18 charcoal
records, followed by the deglacial period (19-11.7 ka; 59 and 34, respectively), and the Holocene (< 11.7 ka; 153 and 81;
Fig. 2b). Therefore, the Pleistocene and particularly millennial-scale events such as Heinrich stadial 1 (HS1, 18-14.8 ka),
Antarctic Cold Reversal/Bglling—Allered (ACR/BA) (14.8-12.9 ka), and the Younger Dryas (YD) (12.9-11.7 ka) are
represented by fewer samples and consequently lower spatial representativity.

290

4.2.2  Arboreal pollen and charcoal influx compilation trends

Arboreal pollen and charcoal influx z-scores are positively correlated in CAn (r = 0.60), SESA (r = 0.64), and SAn (r =
0.84), and negatively correlated in NNeo (r = -0.53) (p-value < 0.001) (Fig. Al).
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Despite represented by a relatively small number of records, during the LGM (21 — 19 ka), positive AP z-scores are
295 recorded in the Northern Hemisphere subregion NNeo (Fig. 4a), in opposition to negative AP z-scores in Southern

Hemisphere subregions (Fig. 4b-g). Meanwhile, charcoal influx z-scores are predominantly negative for all subregions

(Fig. 4k).

By the onset of the deglacial period (19 — 11.7 ka), AP increases in CAn, NEB, SESA, and SAn (Fig. 4c,d,f,g), contrasting

with AP decrease in NNeo (Fig. 4a). No clear long-term trend is detected for Amazonia and CEB. Charcoal influx z-scores
300 in the Southern Hemisphere exhibit negative values during the deglaciation (Fig. 4i-m), followed by a stepwise increase

towards interglacial levels at 14 to 13 ka. On the other hand, the Northern Hemisphere (NNeo) presents a decrease in

charcoal influx z-scores at 13 ka, towards minimum EH values (Fig. 4h).

The Holocene period shows distinct regional patterns in AP z-scores and charcoal influx.

In the early Holocene (EH; 11.7 — 8.2 ka), AP z-scores reach high values for NNeo and CAn (Fig. 4a,c), low values for
305 NEB, CEB, and Amazonia (Fig. 4b,e), and maintain a continuous increase in SAn and SESA (Fig. 4f,g). This period also

records higher charcoal influx z-scores in Amazonia, CEB, SESA, and SAn, and lower values in the NNeo.

In the mid Holocene (MH; 8.2 — 4.2 ka) AP z-scores values increase in Amazonia, NEB, CEB, SESA, and SAn, opposed to

decreasing values in NNeo and CAn. The charcoal influx reaches maximum values in the CAn and increases in the NNeo,

coinciding with decreasing AP trends. On the other hand, charcoal influx decreases slightly in the CEB and SAn and
310 remains relatively constant in Amazonia and SESA.

During the late Holocene (LH; 4.2 — 0 ka), NNeo, CAn, and NEB show an abrupt drop of AP z-scores reaching the lowest

Holocene levels. In NNeo, these shifts coincide with an increase in charcoal influx. Conversely, during the same period, AP

z-scores attain maximum values in Amazonia, CEB, SESA, and SAn, while charcoal influx in these subregions remains

relatively stable since the MH.

10
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Fig. 4 — Arboreal pollen and charcoal influx trends. (a-g) Arboreal pollen and (h-m) charcoal influx z-score values derived from
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curves show the number of records by 400-yr bins. Gray areas represent 2.5 and 97.5" confidence intervals. Note: Enough charcoal

records from Northeastern Brazil were not available to generate a composite curve. Large charcoal anomalies that extend beyond +2 or -2
320 are indicated by circled arrows.

5  Discussion
5.1  Modern climate-fire-vegetation relationships

The most intense fire activity occurs in the warm regions that combine intermediate annual precipitation levels (875-2000
mm.yr?) and a marked dry season (less than 100 mm in the driest month, Fig. 3c-e). Sufficient moisture supports biomass

325 growth, while the dry season grants the necessary flammability for fire events (Fig. 3c-e). These fire-prone conditions are
11
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typical of tropical savannas and grasslands (Fig. 3a,b), where a regular frequency of fire events acts as an important control
for maintaining biodiversity and the physiognomy of vegetation (Bernardino et al., 2022; Mistry, 1998). In arid and
semiarid or high-altitude environments, fire activity is hindered due to biomass limitation (fuel-limited conditions, positive
biomass-fire correlation) (Fig. 3a-e), whereas under wet conditions of tropical rainforests, fire activity is limited due to

330 constant fuel moisture (moisture-limited condition, negative biomass-fire correlation) (Fig. 3a,b). Natural and
anthropogenic wildfires are more frequent at the dry-wet season transition, when biomass flammability is at its highest,
which typically corresponds to the austral spring in Southern Hemisphere tropical regions (Fig. 3f) (Mistry, 1998; Ramos-
Neto and Pivello, 2000). The modern fire regime has been heavily modified by human activity through the intensification
of wildfires burning both fire-adapted and fire-sensitive vegetation (Argibay et al., 2020; Hantson et al., 2015; Pivello,

335 2011). Despite this limitation, insights can still be obtained on the feedbacks between fire, vegetation, and climate (Fig. 3a-
e) as also suggested by global and local fire analyses, which show a combined climate and anthropogenic control on fire
(Hantson et al., 2015; Kitzberger et al., 2022), reinforcing the interconnectedness of these factors.

5.2 \egetation and fire regime changes over the last 21 ka
340 5.2.1  Northern Neotropics (NNeo)

During the LGM, high level of tree cover and weak fire regime (Fig. 5d,e) are consistent with estimates of 4-5°C drop in
mean annual temperatures (Correa-Metrio et al., 2012) and wet conditions (Hodell et al., 2008; Deplazes et al., 2013; Fig.
5a,c). Throughout the deglaciation, a marked decrease in tree cover and intensification of the fire regime relate to
predominant drier phases promoted by southward displacements of the ITCZ associated with millennial-scale events (HS1
345 and the YD) (Fig. 5b,c) (Deplazes et al., 2013; Haug et al., 2001). The wetter interval linked to BA/ACR (Deplazes et al.,
2013; Fig. 5b) is not detected in our analyses. Additionally, human occupation in the NNeo began during the late
Pleistocene (Ardelean et al., 2020), although in smaller populations (Fig. 5d), and likely started contributing to
environmental changes. Nevertheless, late Pleistocene tree cover and fire dynamics suggest predominant hydroclimate
control (Fig. 5b-f) and an overall negative correlation between tree cover and fire activity (r = -0.53, p-values < 0.001, Fig.
350  Ala) suggests moisture-limited condition for fire.
At the onset of the Holocene, during the EH, a marked shift towards expansion of tree cover and minimum fire activity
(Fig. 5 e,f; Fig. Ala) were likely induced by the increase in wetter conditions (Haug et al., 2001; Hodell et al., 2008).
During this period, human populations began engaging in agricultural activities, domesticating maize and squash by ca. 9
ka (Piperno et al., 2009), and likely impacting local fire regimes. However, the gradual long-term tree cover decrease and
355  fire activity increase synchronous with a progressive transition to drier conditions (Haug et al., 2001), suggest a main
climatic driver from the EH until ca. 4 ka (Fig. 5b,e,f). From ca. 4 ka onwards, the expanding anthropogenic pressure in
Central America became a clear driver of vegetation and fire changes (Leyden, 2002) (Fig. 5d). The LH abrupt drop in tree
cover decouples from the gradual climate-driven decrease observed since the onset of the Holocene (Fig. 5a,e; Fig. Ala).
This latter shift in AP is coeval to the demographic expansion of Mesoamerican populations (Fig. 5d). Fire activity also
360  stays relatively high during this period, at similar values to those during the deglacial period (Fig. 5f). At ca. 1.2 ka, the
increase in tree cover and decrease of fire activity was possibly related to the rapid decrease in populations likely associated
with the collapse of the Maya civilization (Gill et al., 2007; Haug et al., 2003).

12
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Fig. 5 — Northern Neotropics (NNeo) vegetation, fire, climate regimes, and human populations: (a) Pollen-based mean annual air
temperature reconstruction from Petén-Itz& core PI1-06 (Correa-Metrio et al., 2012). (b) Bulk sediment Ti content (Haug et al., 2001) and
(c) bulk sediment reflectance (Deplazes et al., 2013) for Cariaco Basin. (d) Summed probability density (SPD) of *4C ages from
archeological sites in Central America (MesoRad, 2020) and northern South America (Goldberg et al., 2016) (N = 1788). (e) Arboreal
pollen (AP) and (f) charcoal influx z-scores composites using 1000-yr (green and red, respectively) and 400 yr (black) smoothing half-
window. Gray areas represent 2.5 and 97.5" confidence intervals. (g) Number (#) of records with available pollen (green) and charcoal

The gigantic extent of Amazonia and its equatorial positioning results in heterogeneous meridional and zonal
environmental patterns for the region. Limited number of records in the LGM and deglacial period results in poor spatial
and temporal constraints of tree cover and fire activity variability, thus preventing a generalization and detailed assessment

of the observed patterns (Fig. 6f). Additionally, caution is needed when interpreting vegetation changes from fluvial and

During the LGM, the region featured a reduced tree cover, mainly at the ecotones and eastern areas, and weak fire activity
(Fig. 6e,f), although its western and core regions remained mostly forested (Akabane et al., 2024; Colinvaux et al., 1996;
Haberle and Maslin, 1999; Urrego et al., 2005). These patterns of low tree cover and fire activity were likely a response to
4-6 °C colder temperatures (Bush et al., 2001; Colinvaux et al., 1996; Stute et al., 1995), low COzm (Fig. 6a) (Bereiter et

During the deglacial period, our data indicate oscillating tree cover patterns during HS1 and highest deglacial AP values by
13-12 ka, coinciding with minimum fire activity (Fig. 6e,f), an intensified SASM (Cheng et al., 2013; Mosblech et al.,

365
370 (red) data in a 400-yr time bin.
5.2.2 Amazonia
375
floodplain records, as edaphic factors, rather than climate, may control the observed patterns.
380
al., 2015), and reduced rainfall in eastern Amazonia (Fig. 6b,c) (Haggi et al., 2017; Wang et al., 2017).
385

2012) and increased COzam (Fig. 6a,b). These pronounced oscillations in AP and charcoal z-scores may arise from
contrasting meridional changes in precipitation patterns associated with millennial-scale events. For instance, during HS1
and the YD, while drier conditions expanded over northern Amazonia (Akabane et al., 2024; Deplazes et al., 2013; Zular et

al., 2019), southern areas experienced wetter conditions (Campos et al., 2019; Mosblech et al., 2012; Novello et al., 2017).

13
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The subsequent EH decline in AP was likely driven by a weakening of the SASM and the stepwise increase in fire activity
390 (Fig. 6e,f), which may have played an important role in reducing tree cover over ecotones. Moreover, the end of the
Pleistocene marks the beginning of human occupation of the Amazon basin, which increased in the EH (Fig. 6d), and sites
from this period show that they were already engaging in resource management practices (Neves et al., 2021). During the
MH, a stepwise increase in tree cover is recorded at 7 ka, mostly reflecting forest expansion in northern Amazonia (Behling
and Hooghiemstra, 2000) and coinciding with monsoon strengthening (Fig. 6b,e). Meanwhile, some increase in fire
395 activity, amid forest expansion and progressively wetter conditions, may relate to expanding human populations in
Amazonia (Cordeiro et al., 2014; Riris and Arroyo-Kalin, 2019). The absence of a clear decrease in tree cover as
consequence of anthropogenic activity is likely due to agroforestry practices that allowed for long fallow periods and forest
recovery (lriarte et al., 2020). In the LH, gradual tree cover expansion is mainly driven by the southward forest expansion
that formed the modern extent of the rainforest (Fontes et al., 2017; Mayle et al., 2000) associated with a further
400 intensification of monsoon strength (Baker and Fritz, 2015) and moisture increase. The decline in fire activity over the last

0.5 ka coincides with the indigenous demographic collapse following the European contact (Fig. 6d,f).
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Fig. 6 — Amazonia vegetation, fire, climate regimes, and human populations: (a) Atmospheric concentration of CO2 (Bereiter et al.,
405 2015). Speleothem 580 from (b) El-Condor (ELC), Cueva del Diamante (NAR), and Santiago (San) caves in western Amazonia (Cheng
et al., 2013; Mosblech et al., 2012) and from (c) Paraiso cave in eastern Amazonia (Wang et al., 2017). (d) Summed probability density
(SPD) of *C ages from archeological sites (N = 732) (Araujo et al., 2025). (e) Arboreal pollen (AP) and (f) charcoal influx z-scores
composites using 1000-yr (green and red, respectively) and 400 yr (black) smoothing half-window. Gray areas represent 2,51 and 97.5%
confidence intervals. (g) Number (#) of records with available pollen (green) and charcoal (red) data in a 400-yr time bin.
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5.2.3 Central Andes (CAn)

Climate changes in the Andes were heterogeneous and asynchronous (Bush and Flenley, 2007). During the LGM,
predominating open vegetation and decreasing fire regime (Fig. 7d,e) were likely controlled by 5-8 °C cooler-than-modern
temperatures exerting the main limiting factor for biomass development as moist conditions prevailed (Baker et al., 2001;

415 Bush et al., 2004; Cheng et al., 2013; Paduano et al., 2003; Valencia et al., 2010) (Fig. 7a,b). Throughout the deglaciation,
this region records an increase in arboreal taxa from 18 to 14.8 ka, during HS1, when the region became significantly
wetter (Martin et al., 2018; Palacios et al., 2020) in a gradually rising temperature background. Despite uncertainties related
to the limited number of records, a slight fire increase in the second part of HS1 may have resulted from higher biomass
availability. From 14.8 to 12.9 ka, pervasive decrease in tree cover throughout the BA/ACR until the onset of the YD may

420 relate to drier conditions, which is then followed by a second tree cover increase throughout the YD and the return of wetter
conditions (Fig. 7a,d). Strong positive correlation of increasing fire activity throughout the LGM and deglacial period along
with increasing trends of tree cover (Fig. Alc) point to fuel-limited conditions for fire. However, intensification in fire
activity may have also hampered further development of a continuous tree cover above the tree line (Rehm and Feeley,
2015). This pattern suggests a complex vegetation control of combined hydroclimatic, temperature, and fire changes.

425 During the EH, tree cover increase may relate to an upward migration of the tree line (Fig. 7a). This tree cover increase was
likely driven by warmer temperatures, despite relatively drier conditions resulting from reduced summer precipitation, as
suggested by §'80 data from ice cores and speleothems (Cheng et al., 2013; Thompson et al., 1998; Vuille et al., 2003) (Fig.
7a). As in NNeo and Amazonia, evidence for human agricultural activities in CAn began during this period (Pagan-Jiménez
etal., 2016).

430  The MH is characterized by a stepwise intensification of fire regime, while tree cover remains relatively high (Fig. 7d,e).
The maintenance of tree cover, despite overall dry conditions in the Altiplano (Fig. 7b) (Baker et al., 2001; Hillyer et al.,
2009; Valencia et al., 2010), may have been sustained by the persistence of moist microclimates (Ledru et al., 2013).
Furthermore, hydroclimate changes in CAn during this period were not homogeneous. The drier conditions reported in the
Altiplano (Baker et al., 2001; Bush et al., 2005; Bush and Flenley, 2007; Hillyer et al., 2009) contrasts with the gradual

435 moisture increase in the east-flank of the Andes driven by intensification of the SASM (Bustamante and Panizo, 2016;
Cheng et al., 2013) (Fig. 7a,b), which suggests the influence different mechanisms affecting precipitation in CAn. An
enhanced influence of upper westerly winds during austral summer is recognized to inhibit the moist-laden easterlies and to
weaken the Bolivian High, promoting dry events at high altitudes (Garreaud et al., 2003; Vuille, 1999). While this
mechanism exerts control on precipitation over the Altiplano, the east-flank mostly remains under the influence of the

440 easterlies. Thereby stronger influence of upper westerlies during the MH conciliates the progressively wetter east-flank and
a marked dry phase in the Altiplano. Furthermore, while 3'%0 in ice and speleothem cores suggest primarily reflect rainy
season precipitation (Cheng et al., 2013; Thompson et al., 2000; Vuille et al., 2003), fluctuations in lake levels are
influenced by annual precipitation (Theissen et al., 2008). Thus, this suggests that despite a gradual increase in summer
precipitation throughout the Holocene, the MH saw a decrease in annual precipitation over the Altiplano. These conditions,

445 as well as anthropogenic activities, would have favored a stepwise intensification of fire regime and a decline in tree cover.
By this period, at ca. 6 ka, agropastoral systems based on maize agriculture and llama herding became widespread
(Nascimento et al., 2020).

The LH marks a major decrease in tree cover and high fire activity (Fig. 7c), probably related to the expansion of human
impacts in the region and increasing sedentism (Goldberg et al., 2016; Valencia et al., 2010). Anthropogenic activity likely

450 maintained fire activity at similar rates to the previous MH dry phase (Fig. 7e) despite moisture increase, maintaining a
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lowered and sharper tree line (Schiferl et al., 2023). During the last 0.5 ka, tree cover expansion and decreased fire activity
may point to the abandonment of sites as consequence of the European contact and demographic collapse in the region
(Koch et al., 2019).
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Fig. 7 — Central Andes (CAn) vegetation, fire, climate regimes, and human populations: (a) Speleothem 50 from EIl-Condor
(ELC), Cueva del Diamante (NAR), and Santiago (San) caves (Cheng et al., 2013; Mosblech et al., 2012). (b) Freshwater benthic diatom
(%) from Titicaca Lake (Baker et al., 2001). (c) Summed density probability of *4C ages from archeological sites in CAn (Goldberg et al.,
2016) (N = 949). (d) Arboreal pollen (AP) and (e) charcoal influx z-scores composites using 1000-yr (green and red, respectively) and

460 400 yr (black) smoothing half-window. Gray areas represent 2.5 and 97.5" confidence intervals. (f) Number (#) of records with
available pollen (green) and charcoal (red) data in a 400-yr time bin.

5.2.4  Northeastern Brazil (NEB)

In NEB, the scarcity of records decreases the precision and accuracy of the observed trends (Fig. 8e) and prevents
465 producing a composite curve using charcoal data. Therefore, we only discuss major features of tree cover and fire
dynamics.
During the LGM, the region experienced low tree cover driven by prevailing dry conditions (Cruz et al., 2009; Dupont et
al., 2001). The deglaciation period is marked by tree cover expansion, associated to phases of southward displaced ITCZ
during HS1 and YD (Fig. 8a,c) (Bouimetarhan et al., 2018; Cruz et al., 2009; Dupont et al., 2001; Mendes et al., 2019;
470  Venancio et al., 2020). These periods featured the onset of forest corridors connecting Amazon and Atlantic forests and
decreased fire activity during YD (Fig. 8c,d) (Bouimetarhan et al., 2018; Dupont et al., 2009; Ledru and de Araijo, 2023;
De Oliveira et al., 1999).
During the EH, decrease in tree cover is likely a consequence to both climate changes and increasing human impacts. This
period features drier conditions relative to YD in northern NEB due to the northward displacement of the ITCZ (Mendes et
475  al., 2019; Prado et al., 2013a; Venancio et al., 2020) and the expansion of human populations in the region (Araujo et al.,
2025) (Fig. 8b). In the subsequent MH period, increasing trends in tree cover (Fig. 8c) may reflect relatively wet conditions
16
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due to a weak Nordeste Low (Cruz et al., 2009; Prado et al., 2013b) (Fig. 8a) and southward shifted seasonal migration
range of the ITCZ (Chiessi et al., 2021), in addition to decreased human populations in inland parts of NEB (Araujo et al.,
2025) (Fig. 8b). The LH was marked by a decrease in tree cover and intensification of the fire regime, likely in response to
480  the establishment of the modern semiarid conditions over most NEB (Chiessi et al., 2021; Cruz et al., 2009; Utida et al.,
2020) and rapid increase in human populations (Fig. 8b) (Araujo et al., 2025).
The relationship between tree cover and fire in the NEB remains elusive due to the limited number of records (Fig. 8d).
Charcoal records suggest a negative correlation between tree cover and fire (Fig. 8c). This observation, however, is
apparently counterintuitive, given that Caatinga currently exhibits the opposite pattern (fuel-limited conditions), where the
485 lack of fuel inhibits fire activity (Argibay et al., 2020) (Fig. 4a,c). We propose two potential explanations for this apparent
discrepancy. First, the fire records are located at the margins of the semiarid region, thus capturing influences from adjacent
tropical savannas and forests, rather than exclusively reflecting xeric vegetation-fire dynamics. Second, increasing human
occupation during the LH (Fig. 8b) may have intensified burning activities, even as natural fire frequencies declined. While
NEB contains the earliest evidence of human occupation of the Americas (Boéda et al., 2014), only the LH saw a

490  proliferation of more sedentary, possibly agricultural, ceramic-producing societies (Oliveira, 2002).
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Fig. 8 — Northeastern Brazil (NEB) vegetation, fire, climate regimes, and human occupation: (a) Speleothem 3*%0 from Rio Grande
do Norte cave (RN) (Cruz et al., 2009). (b) Summed density probability of 4C ages from archeological sites in NEB (N = 542) (Araujo

495 et al., 2025). (c) Arboreal pollen (AP) z-scores composites using 1000-yr (green) and 400 yr (black) smoothing half-window. Gray areas
represent 2.5M and 97.5" confidence intervals. (d) charcoal influx z-scores from single sites (brown: De Oliveira et al., 1999; red:
Bouimetarhan et al., 2018). (e) Number (#) of records with available pollen data in a 400-yr time bin.

5.25 Central-eastern Brazil (CEB)

500 During the LGM, tree cover and fire activity exhibit high trends; however, the scarcity of records hampers a regional
generalization (Fig. 9e). During the deglacial period, high tree cover and low fire activity trends were favored by periods of
intensified rainfall in the region, i.e., HS1 and the YD (Fig. 9a,c,d) (Campos et al., 2019; Martins et al., 2023; Meier et al.,
2022; Strikis et al., 2015, 2018), which allowed the widespread migration of cold- and moist-adapted tree taxa through
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central Brazil (Pinaya et al., 2019). An increase in fire activity centered in ca. 16.5 ka may result from a short dry incursion
505 during HS1 (Strikis et al., 2015), although the scarcity of data prevents further assessment of the observed pattern (Fig. 9d).
Our compilation suggests a prevailing decrease in tree cover and intensification in fire activity from the YD to the EH (Fig.
9c). These trends were likely a response to a weaker SASM/SACZ led by low austral summer insolation, which yielded
drier conditions in the region (Cruz et al., 2005; Prado et al., 2013a; Wong et al., 2023). The stepwise increase in fire
activity at ca. 13 ka, may have further contributed to the tree cover rapid decrease (Fig. 9c,d). Additionally, human activity
510 probably also contributed to tree cover and fire trends during this period, as archaeological records show well-established
occupations from ca. 13 ka onwards and expanding population in the EH (Araujo et al., 2025; Strauss et al., 2020).
Throughout the MH and the LH, the progressive increase in rainfall driven by a progressive strengthening of the SACZ
(Cruz et al., 2005; Meier et al., 2022) (Fig. 9a) favored the expansion of tree cover and the attenuation of fire activity (Fig.
9b,c). In the LH, despite a second wave of human impacts in the region after an occupation hiatus in the MH (Araujo et al.,
515 2005, 2025), tree cover exhibits a continuous increase and fire activity a decreasing trend (Fig. 9b,c,d).
In CEB, long-term tree cover changes are weak and negatively correlated with fire activity (Fig. 9b,c, Fig. Ald). The
contrasting trend in fire and tree cover indicates the role of fire in impairing biomass growth, while conversely, moist-

driven development of woody formations leads to the suppression of fire (Fig. 9b,c, Fig. Ald).
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Fig. 9 — Central-eastern Brazil (CEB) vegetation, fire, climate regimes, and human occupation: (a) Downcore In(K/Al) from marine
sediment core M125-35-3, which reflects changes in the clay mineral composition and increases with chemical weathering intensity and
hence, moisture availability (Meier et al., 2022). (b) Summed density probability of **C ages from archeological sites in CEB (N = 481).
(c) Arboreal pollen (AP) and (d) charcoal influx z-scores composites using 1000-yr (green and red, respectively) and 400 yr (black)

525 smoothing half-window. Gray areas represent 2.5" and 97.5" confidence intervals. (e) Number (#) of records with available pollen
(green) and charcoal (red) data in a 400-yr time bin. Large charcoal anomalies that extend beyond +2 or -2 are indicated by circled
arrows.

5.2.6  Southeastern South America (SESA)

530 During the LGM, the low arboreal pollen z-scores reflect the dominating open physiognomies (Fig. 10c) (Behling, 2002b;
Gu et al., 2018), despite moist conditions sustained by a strong SASM/SACZ influence (Cruz et al., 2005). This

predominating open vegetation was likely controlled by 3—7 °C lower temperatures (Behling, 2002a; Chiessi et al., 2015)
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and reduced COzam levels (Fig. 10a,b) (Bereiter et al., 2015). Moreover, stronger Antarctic cold fronts may have shifted the
woody savanna and forest boundaries further north, favoring the prevalence of open grasslands. The combination of low
535  biomass, cold and moist conditions restricted fire activity during this period (Fig. 10f). The long-term and gradual trend of
biomass expansion and fire intensification from the LGM to the EH suggests that scarcity of fuel was a limiting factor for
fire activity during the Pleistocene (strong positive tree cover-fire correlation) (Fig. 10e,f, Fig. Ale). Notably, our tree cover
and fire activity composite curves show no clear correlation with millennial-scale hydroclimate changes during most of the
late Pleistocene, suggesting that temperature and COzam exerted primary control. In addition, Campos et al. (2019)
540 suggested that no significant increase in precipitation occurred in SESA during HS1 and the YD. Furthermore, while human
occupation began at ca. 14-13 ka in the region, impacts were likely still limited (Araujo et al., 2025; Araujo and Correa,
2016; Suérez, 2017).
During the EH, a peak in fire activity (Fig. 10f) was facilitated by the availability of biomass coupled with warmer
temperatures and relatively drier conditions (Fig. 10b,c,e,f). The intensified fire regime, on the other hand, probably
545  contributed to the retraction of forest formations during this period (Fig. 10e,f, Fig. Ale). Throughout the Holocene, a
continuous increase in biomass decoupled from COaum and likely temperature trends suggests a forest expansion mainly
driven by increasing precipitation and the gradual suppression of fire activity (Fig. 10c,e,f). From 6 to 3.5 ka, the
continuous expansion of tree cover is slowed down, coinciding with a peak in fire activity and expanding human
populations in the region (Fig. 10d-f) (Araujo et al., 2025). In the last 2 ka, despite an increase in human populations
550  (Araujo et al., 2025), tree cover and fire activity do not exhibit a clear response.
The Pleistocene to Holocene transition likely represents a transition from temperature/CO2am-limited to moisture-limited
conditions, also when an inflexion in the correlation of tree cover and fire is observed (Fig. Ale). Over the 21-kyr analyzed
period, tree cover and fire activity show long-term increases but with a negative correlation on detrended data (r = -0.40, p-
value < 0.001, not shown) (Fig. 10c,d). This suggests that while fire regime intensified with long-term increasing fuel
555 (biomass) availability, fires also limited biomass growth in the short-term.
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Fig. 10 — Southeastern South America (SESA) vegetation, fire, climate regimes, and human occupation: (a) Atmospheric
concentration of CO2 (Bereiter et al., 2015). (b) Estimated mean annual temperature (Chiessi et al., 2015). (c) Speleothem %0 from

560 Botuvera cave (Wang et al., 2007). (d) Summed density probability of *C ages from archeological sites in SESA (N = 1701) (Araujo et
al. 2025). (e) Arboreal pollen (AP) and (f) charcoal influx z-scores composites using 1000-yr (green and red, respectively) and 400 yr
(black) smoothing half-window. Gray areas represent 2.5" and 97.5" confidence intervals. (g) Number (#) of records with available
pollen (green) and charcoal (red) data in a 400-yr time bin. Large charcoal anomalies that extend beyond +2 or -2 are indicated by circled
arrows.

565 5.2.7  Southern Andes (SAn)

During the LGM, SAn was characterized by open physiognomies and a weak fire regime (Fig. 11e,f). This was likely
consequence from significantly cold conditions (Fig. 11a,b) (Massaferro et al., 2009), while both wet and dry conditions
have also been suggested along SAn (Montade et al., 2013; Moreno et al., 2018). After ca. 18 ka, tree cover increases along
warming temperatures (Kaiser et al., 2005) and rising COzam (Fig. 11a,b), with an accelerated tree cover increase during

570 HS1 coinciding with a warming phase and retreating glaciers in the region (Fig. 11b,e,f) (Barker et al., 2009; Kaiser et al.,
2005; Moreno et al., 2015; Palacios et al., 2020). Fire activity features a stepwise increase from 13.8 to 12 ka,
corresponding to the second deglacial warming phase (Fig. 1lab.e; Fig. Alf), under decreasing, albeit still high,
precipitation levels (Montade et al., 2019) and drier summers (Moreno, 2020). This threshold in the fire regime was likely
induced by warming temperatures and availability of biomass. The strong negative correlation between biomass and fire

575 activity supports a fuel-limited fire regime in the region (Fig. A1f). Smaller human populations were already present by this
time and may have contributed to a lesser extent to the intensification of the fire regime (Fig. 11d) (Perez et al., 2016;
Salemme and Miotti, 2008). At ca. 13 ka, Nothofagus emerges as the predominant taxon and marks the widespread
expansion of temperate forests. However, this expansion exhibited latitudinal variability, with a gradual trend in southern
areas and a steeper increase after 15 ka in northern regions (Nanavati et al., 2019).

580 During the EH, deacceleration of tree cover expansion may have been favored by peak fire activity (Fig. 11d,e) and
decrease in moisture due to the weakened and poleward shifted Southern Westerly Winds (SWW) (Lamy et al., 2010;
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Moreno et al., 2021; Nehme et al., 2023) (Fig. 11c) coupled with relatively warmer conditions. The EH climate
amelioration also allowed human populations to spread and colonize other localities in the region (Miotti and Salemme,
2003; Perez et al., 2016; Salemme and Miotti, 2008), expanding its contribution to increased fire activity. In the MH, the
585  expansion of forests and decrease in fire activity (Fig. 11e,f) may have been driven by increased moisture due to a
strengthening and equatorward shift of the northern boundary of the SWW (Fig. 1c,d) (Razik et al., 2013; Villa-Martinez et
al., 2003). Unlike other regions of South America (e.g., CAn, CEB, NEB), the MH marks a rapid growth in human
populations in SAn, which continued through the LH and may have benefited from expanding forests (Fig. 11e) and
consequent increase in availability of resources. By 5.5 ka, the region experiences the highest tree cover, whereas fire
590 activity attains a peak after 3.5 ka, when human populations largely expand (Perez et al., 2016).
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Fig. 11 — Southern Andes (SAn) vegetation, fire, climate regimes, and human occupation: (a) Surface mean annual temperature
anomaly reconstructed from EPICA Dome C, Antarctica (Jouzel et al., 2007). (b) Sea surface temperature reconstruction for the eastern

595 South Pacific (Kaiser et al., 2005). (c) Rainfall estimates from Lake Aculeo (34°S; northern portion of the Southern Westerly Winds)
based on multiproxy lake-level reconstructions (Jenny et al., 2003). (d) Summed density probability of **C ages from archeological sites
in SAn (N = 621) (Goldberg et al., 2016). (e) Arboreal pollen (AP) and (f) charcoal influx z-scores composites using 1000-yr (green and
red, respectively) and 400 yr (black) smoothing half-window. Gray areas represent 2.51" and 97.5% confidence intervals. (g) Number (#)
of records with available pollen (green) and charcoal (red) data in a 400-yr time bin.

600 5.3  Controls on neotropical vegetation and fire regime
5.3.1 Late Pleistocene (21 — 11.7 ka)

The different changes in vegetation and fire activity observed across the Neotropics highlights the influence of competing

and context-dependent drivers that operate on different spatial and temporal scales. In general, low levels of COzam, such as

during the LGM, reduce photosynthetic efficiency, mainly in C3 plants, limiting biomass potential growth and favoring C4
605 grasses (Boom et al., 2002; Foley, 1999; Maksic et al., 2022). Reduced COam also tend to weaken the fire regime by

altering availability and properties of biomass (Haas et al., 2023).

In sub- and extra-tropical latitudes (SAn, SESA) and high-altitude sites (CAn), temperatures 3-8°C lower than present

likely constrained biomass growth during LGM, even in locally moist areas (Fig. 12c) (Cruz et al., 2005; Massaferro et al.,
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2009; Moreno et al., 2018). While cooler temperatures can improve water-use efficiency, frost events can produce long-
610 term plant mortality and shape forest-savanna boundaries (Hoffmann et al., 2019; Inouye, 2000). Weak fire regime over
these regions likely resulted from limited biomass in addition to lower temperatures and high moisture levels (Fig. 12f).
In warmer tropical regions (NNeo, Amazonia, CEB, NEB) precipitation likely played a pivotal role in the control of
vegetation and fire dynamics. In NNeo, high tree cover and low fire activity were sustained by moist conditions (Fig. 12c).
Strengthened SASM and an east-west precipitation dipole (wet west Amazonia and dry central-east Amazonia and NEB)
615 (Cheng et al., 2013; Cruz et al., 2009; Kukla et al., 2023; Wang et al., 2017), led to decreased tree cover in Amazonian
ecotones and in NEB (Fig. 12c). In CEB, tree cover and fire patterns were heterogeneous (Fig. 12c), likely influenced by
both climatic and edaphic conditions. Nevertheless, colder and wetter conditions favored the increase in tree cover and
migration of woody taxa across central Brazil (Pinaya et al., 2024). Fire activity remained mostly weak in tropical regions
(Fig. 12f), likely constrained by low biomass availability due to reduced COzm and dryness in NEB (fuel-limited
620  conditions) or by persistent moisture in NNeo and western Amazonia (moist-limited conditions).
The deglaciation is marked by progressive warming (Shakun et al., 2012) and rising CO2am levels (Bereiter et al., 2015),
along with substantial shifts in precipitation linked to millennial-scale events. In the Neotropics, HS1 (18-14.8 ka) and the
YD (12.9-11.7 ka) were characterized by wetter conditions in south tropical latitudes (Campos et al., 2019; Meier et al.,
2022; Mulitza et al., 2017) and drier conditions in north tropical latitudes (Deplazes et al., 2013; Zular et al., 2019), driven
625 by southward ITCZ shifts. While our analyses can address the long-term trends shaped by these events, the low availability
of high temporal resolution and continuous records with robust chronological control hinders a more detailed assessment of
site-specific vegetation and fire anomalies over time.
Between 19 and 14.8 ka, Southern Hemisphere tropical regions (CAn, NEB, SESA, SAn) exhibit increasing tree cover and
decreasing fire activity, mostly driven by rising temperatures and enhanced rainfall (Fig. 12b,e) (Campos et al., 2019;
630  Shakun et al., 2012). In contrast, NNeo exhibits the opposite trends (Fig. 12b). In the second part of deglaciation, 14.8-11.7
ka, a generalized increase in tree cover and fire activity (Fig. 12a,d) coincides with further warming (Shakun et al., 2012)
and COqam rise (Bereiter et al., 2015). CAn and the northern parts of SAn indicate an increase in tree cover (Fig. 12a),
likely related to the combination of warming and wet conditions (Baker and Fritz, 2015; Montade et al., 2019). Notably,
vegetation and fire responses in NEB (wetter) and SESA (drier) may reflect the prevailing precipitation dipole pattern
635  (Campos et al., 2022; Cruz et al., 2009; Wong et al., 2023), although lower temperatures may have still played a role in
limiting tree cover in SESA (Fig. 12a). The stepwise intensification in southern hemisphere fire during this period, ca. 14—
13 ka, agrees with a worldwide shift in fire regime intensification (Daniau et al., 2012), indicating that warmer conditions,

contingent to fuel availability, were critical for this shift.
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Fig. 12 — Late Pleistocene maps of site-specific arboreal pollen percentages and anomalies of average arboreal pollen and
charcoal influx z-score values by time period: (a-c) arboreal pollen percentages, (d-f) arboreal pollen (AP) and (g-h) charcoal influx.
Three time slices are considered: (c, f, i) Last Glacial Maximum (21 — 19 ka); (b, e, h) first part of the deglacial period encompassing the
first stepwise warming (19 — 14.8 ka); (a, d, g) and second part of the deglacial period, encompassing the second stepwise warming (14.8
—11.7 ka). Sites with positive or negative z-score anomalies indicate a record with predominantly higher or lower tree cover/fire activity
than the average over the last 21 kyr. Elevations greater than 500 m are represented in light gray, while areas above 1500 m altitude are
shown in dark gray. Major rivers are displayed as black lines.

5.3.2 Holocene (11.7 - 0 ka)

The greater availability of continuous records spanning the Holocene allows for a more detailed spatial assessment of

vegetation and fire dynamics (Fig. 13). The similarities of tree cover and fire activity changes with precipitation shifts
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suggest that moisture availability became a more important driver of Holocene vegetation and fire dynamics in the whole
Neotropics.
Compared to the YD, the EH is characterized by negative tree cover trends in Amazonia, NEB, and CEB, slow tree cover
increase in SESA and SAn, where fire activity also increased, and opposite trends in NNeo (Fig. 13c,f,i). These changes are
655 coherent with hydroclimate patterns related to a northward-displaced ITCZ and weaker SASM/SACZ resulting in drier
conditions in most southern tropical regions (Cheng et al., 2013; Cruz et al., 2005), relatively drier but still humid
northeastern Brazil (Cruz et al., 2009; Venancio et al., 2020), and wetter conditions in northern Neotropical latitudes (Haug
et al., 2001). This period also saw a weaker, southward-displaced SWW, but relatively strengthened in its core (ca. 53°S)
(Lamy et al., 2010), contributing to drier conditions in most of SAn. Additionally, evidence of increasing human
660 populations in Central and South America (Araujo et al., 2025; Goldberg et al., 2016; MesoRad, 2020) and plant
domestication in NNeo, CAn and Amazonia (Piperno, 2011) suggests that, although still limited, they played an active role
as ecosystem engineers, influencing fire regimes and landscape dynamics.
In the MH, tree cover expanded over northern Amazonia, NEB, CEB, SESA, and SAn (Fig. 13b,e). This pattern coincides
with gradual precipitation changes driven by a southward expanded migration range of the ITCZ (Chiessi et al., 2021; Haug
665  etal., 2001), a gradual intensification of the SASM/SACZ (Cheng et al., 2013; Prado et al., 2013a; Wong et al., 2023), and
a weakening of the Nordeste Low (Cruz et al., 2009). The increase in fire activity over SESA and southwestern and western
Amazonia during this period may have also resulted from increasing human activity over these regions (Araujo et al., 2025;
Brugger et al., 2016; Lombardo et al., 2020), while in most of the Neotropics this period is marked by an occupation hiatus
(Araujo et al., 2005, 2025). Although humans have been present in the Neotropics since the late Pleistocene (Goebel et al.,
670 2008), their large-scale influence on tree cover and fire regimes became more pronounced by the end of MH, as
consequence of a marked demographic expansion (Gill et al., 2007; Goldberg et al., 2016; Maezumi et al., 2018). This
period also featured an intensification of the SWW and a northward migration of its northern boundary (Lamy et al., 2010;
Razik et al., 2013) and a reduced strength/frequency of ENSO variability compared to the EH (Koutavas and Joanides,
2012; Polissar et al., 2013). This may have contributed to the SAn moisture and vegetation increase and fire decrease, while
675 in the Altiplano fire intensified amid dry conditions (Fig. 13e,h).
During the LH, tree cover expanded in southern Amazonia, SESA, and part of CEB (Fig. 13a,d). This pattern was
facilitated by increased moisture in these regions due to the strengthening of the SASM/SACZ (Cheng et al., 2013; Cruz et
al., 2005). While our study did not assess for vegetation compositional changes that might highlight human impacts in these
regions (Flantua and Hooghiemstra, 2023), intensified fire activity, despite increased moisture, may point to human
680 influence. In contrast, tree cover declined in NNeo and NEB, where fire activity intensified. These declines were likely a
result of both intensified human activity and climatic shifts toward drier conditions. The LH period marks the onset of
semi-arid conditions in NEB (Cruz et al., 2009; Chiessi et al., 2021) and precipitation reduction in NNeo (Haug et al.,
2001). Meanwhile, in CAn, tree cover also declined despite moist conditions related to a strengthened SASM. Notably,
NNeo and CAn became densely populated during the LH, and the environmental impacts of human activities specially in
685 these areas likely outweighed those driven by climate alone. In SAn, tree cover remained relatively stable and fire activity
increased, despite the rising moisture (Fletcher and Moreno, 2012; Lamy et al., 2010), also suggesting the influence of
human activities in this region. In the Neotropics, numerous pollen records indicate human activity, particularly in the last 2

ka (Flantua et al., 2016; Flantua and Hooghiemstra, 2023), in line with our observations.
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Fig. 13 — Holocene maps of site-specific arboreal pollen percentages and anomalies of average arboreal pollen and charcoal influx
z-score values by time period: (a-c) arboreal pollen percentages, (d-f) arboreal pollen (AP) and (g-h) charcoal influx. Three time slices
are considered: (c, f, i) early Holocene (11.7 — 8.2 ka); (b, e, h) mid Holocene (8.2 — 4.2 ka); and (a, d, g) late Holocene (4.2 — 0.0 ka).
Sites with positive or negative z-score anomalies indicate a record with predominantly higher or lower tree cover/fire activity than the
average over the last 21 kyr. Elevations greater than 500 m are represented in light gray, while areas above 1500 m altitude are shown in
dark gray. Major rivers are displayed as black lines.
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6  Conclusions

Our assessment of modern climate-vegetation-fire dynamics, combined with a compilation of pollen and charcoal records
from the Neotropics contributed to elucidating key environmental controls on vegetation and fire changes in the region over
700  the last 21,000 yr. Our findings reveal contrasting shifts in vegetation and fire activity across Neotropics, highlighting the
complex interplay of various competing drivers, such as temperature, CO2am, and precipitation, in addition to vegetation-
fire feedback. In the southern latitudes (SAn, SESA) and high Andes (CAn), 3-8°C lower temperatures were the critical
limiting factor for biomass growth during the glacial period. In contrast, in the warmer tropical regions (NNeo, Amazonia,
CEB, NEB) precipitation played a pivotal role. We thereby suggest that shifts towards open arboreal cover during the
705  glacial period should not be interpreted solely as indicators of dry conditions, particularly in regions where low
temperatures and CO2am constrained biomass growth, i.e., extra- and sub-tropical and high-montane regions. Fire activity,
in turn, exhibits a non-linear response, increasing with biomass availability in fuel-limited conditions (SAn, SESA, CAn),
but decreasing with moisture availability under moisture-limited conditions (NNeo, CEB). On the other hand, further
intensification in fire activity can hamper biomass growth. The deglacial stepwise increase in fire activity in several
710 subregions of the Neotropics also suggests that warming thresholds can trigger rapid intensification of fire regimes,
provided sufficient biomass is available.
During the Holocene, when variations in temperature and COzam Were less pronounced, precipitation became a primary
climatic determinant of tree cover and fire dynamics in the Neotropics. For instance, long-term Holocene increase in tree
cover in Amazonia, CEB, and SESA were likely promoted by progressively increasing moisture, in opposition to NNeo and
715 NEB. In addition to environmental controls, especially in the later parts of the Holocene, accelerated human demographic
growth promoted widespread landscape transformation. The Holocene intensified fire regime probably resulted from a
combination of warming and drying in some regions (NNeo, NEB) and direct human impacts (e.g., NNeo, CAn), which
further induced low tree cover states or delayed tree cover recovery. This finding raises concern for the future, as potential
increases in extreme hot and dry events across parts of the Neotropics are likely to intensify fire regimes and tree cover loss
720 in the region.
Our compilation underscores the scarcity of records spanning the last 21,000 years with both high temporal resolution and
precise chronological control. Therefore, further downcore studies are required to better constrain the effects of short-
lasting events on vegetation and fire dynamics. These efforts are crucial to better constrain the impacts of short-lived
climatic events on vegetation and fire dynamics, which may help to assess more rapid environmental responses as expected
725 in the future.
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7  Appendices
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730 Fig. Al — Correlation between arboreal pollen z-scores and charcoal influx z-scores by subregion. A strong and significant positive
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enhances fire potential. Conversely, a strong significant negative correlation (b) suggests climate-limited conditions, where climate

variables, such as moisture, predominantly regulate fire dynamics.
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8  Code availability

The analyses were primarily performed using code from already developed R packages “paleofire”, “Neotoma” and
“rcarbon”. However, the specific scripts used, based on these packages, can be found on GitHub at
740 https://github.com/tkakabane/APcomp

9  Data availability

The authors declare that all data supporting the findings of our study are publicly available from the web or upon request to
the authors. Pollen and charcoal data are available from Neotoma Paleoecology (http://www.neotomadb.org), Pangaea

(https://www.pangaea.de/), and Reading databases. Present climate models are available from WorldClim

745  (https://www.worldclim.org/), modern fire activity from the global fire patch functional traits database (FRY), and

terrestrial ecoregions can be found on the World Wildlife Fund website

(https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world).

10 Supplementary data

Supplementary data 1 — Details of the sites included in the study: site coordinates, site name, altitude, maximum and

750  minimum estimated ages, and publication reference.
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